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Fast and Robust Inexact Newton Approach
to the Harmonic-Balance Analysis
of Nonlinear Microwave Circuits
Vittorio Rizzoli, Franco Mastri, Claudio Cecchetti, and Fiorella Sgallari

Abstract—The letter discusses a novel approach to nonlin-
ear microwave circuit simulation by the harmonic-balance (HB)
technique. The nonlinear system is solved by an inexact Newton
method, and the GMRES iteration is used at each step to find
a suitable inexact Newton update. The peculiar structure of the
Jacobian matrix allows the basis vectors of the Krylov subspace
to be computed mostly by the FFT. The resulting simulation tool
is fast and robust, and outperforms conventional HB techniques
when applied to large-size nonlinear analysis problems.

Index Terms—Harmonic balance, Krylov subspace methods.

I. INTRODUCTION

T HE Newton-iteration-based harmonic-balance (HB) tech-
nique is generally acknowledged as the principal method

for the analysis of nonlinear microwave circuits working
in steady-state regime under multitone excitation. Harmonic
balance simulators relying upon this method are robust and
well behaved, and can normally reach convergence starting
from zero harmonics even at very high drive levels [1]. The
only outstanding drawback of this simulation approach lies in
the huge demand of computer resources when the problem
size becomes large. This is due to the fact that the storage of
the Jacobian matrix requires words, and its factorization
time is , where is the number of scalar unknowns.
These difficulties may be partly overcome making use of an
artificially sparse Jacobian matrix coupled with sparse-matrix
solvers [1], [2], but this unavoidably cripples the power-
handling capabilities of the analysis algorithm. Thus, the need
exists for an HB technique that can tackle large-size problems
(say, ) on ordinary workstations, while fully
retaining the convergence properties of traditional HB. An
algorithm of this kind, named the inexact Newton harmonic
balance (INHB) is outlined in this letter. The INHB provides
the same robustness and accuracy as ordinary HB techniques
with a dramatic reduction of memory storage and CPU time,
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and thus opens the way to the HB treatment of very large-sized
simulation problems.

II. I NEXACT NEWTON HARMONIC-BALANCE ANALYSIS

Let the HB solving system be formulated as a nonlinear
system of equations in unknowns of the form ,
where is continuously differentiable. Given an
approximation to the exact solution , the corresponding
Newton update is defined as the solution of Newton’s
equation , where is the Jacobian
matrix of with respect to . The Newton iteration is then
defined by . This solution technique requires
the Jacobian matrix to be stored and factorized at each step,
and is thus not well suited for large values of because of
memory and CPU time requirements. Both difficulties can be
simultaneously overcome by resorting to aninexactNewton
method [3]. Aninexact Newton updateis defined as a vector

satisfying the condition

(1)

where is named theforcing term [4]. The inexact Newton
iteration is then defined by . Note that for

reduces to , so that the forcing term is in some
way a measure of the allowed deviation of the inexact update
from the Newton update. The iteration is terminated when
the relative error on each element of drops below a
prescribed threshold.

Inexact Newton methods have a number of interesting
features that make them an ideal choice for solving large-
sized nonlinear systems. They can be globalized by suitable
techniques [5], and their efficiency can be greatly improved
by appropriately updating the forcing term at each step [4].
Above all, they do not require a large linear system to be
exactly solved at each step, sincemust satisfy (1), but is
otherwise arbitrary. Instead, for a given the inexact update
can be iteratively refined starting from an arbitrary initial guess
(zeroth-order approximation), until (1) is met. For application
to HB analysis, the best results have been obtained making use
of the GMRES iterative solver [6]. Let us introduce a suitable
approximation of . The initial guess is defined by

(2)

where is named thepreconditioner[7]. A set of real -
vectors defined by the following recursive relation is then
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computed and stored:

(3)

where is the identity matrix of order . The vector space
spanned by the vectors with is called aKrylov
subspace of dimension [6]. The th-order approximation is
then expressed in the form [6]

(4)

so that the correspondingresidual is

(5)

The coefficients are found by a least squares method in
such a way that is minimized. is then taken as
the inexact Newton update if (1) is satisfied. This result is
guaranteed to be achieved for sufficiently large, because

[6]. In practice it has been found that
is normally sufficient to obtain the desired accuracy

in HB applications, even at high drive levels.

III. GENERATION OF THE BASIS

VECTORS OF THEKRYLOV SUBSPACE

With the INHB the CPU time required to exactly solve
Newton’s equation is essentially replaced by the time required
to compute the basis vectors (3). As a matter of fact, the subse-
quent minimization process has negligible cost for large values
of , since the number of coefficients is comparatively
small. Most of the CPU time is thus spent in the multiplication
of the right-preconditioned Jacobian matrix by a
sequence of vectors. This basic operation can be performed
very efficiently by exploiting the peculiar structure of the
Jacobian matrix, as will be shown in this section. Note that
the subscript “” of the current inexact Newton step will be
understood in the following for the sake of formal simplicity.

Making use of the piecewise formulation of the HB tech-
nique, the circuit is partitioned into a linear and a nonlinear
subnetwork connected through ports (device ports). The
nonlinear subnetwork may be described by the parametric
equations [1]

(6)

where and are vectors of voltages and currents at
the common ports, is a vector of state variables (SV),
and is a vector of time-delayed state variables, i.e.,

. The dimension of all vectors in (6) is equal
to . The complex HB error at a generic intermodulation
(IM) product of the forcing tones is given by [1]

(7)

where are the th harmonics of (6), is the
linear subnetwork admittance matrix, and is a vector of
Norton equivalent current sources of the free generators of
frequency . Similarly, the th harmonic of will be
denoted by .

In order to obtain a real solving system, the circuit equations
are formulated in terms of the real and imaginary parts of both
the HB errors and the SV harmonics. Accordingly, the real
Jacobian matrix is partitioned frequency-wise into submatrices

of the form

(8)

The basic operation to be performed in the construction of
the Krylov subspace (3) is the multiplication of the Jacobian
matrix by some real vector, say, to find another real vector,
say . We may partition into subvectors frequency-wise
in a way consistent with (8), so that theth subvector of
takes on the form

(9)

From (8), (9) making use of (7) we obtain

(10)

Note that is the imaginary part of the same quantity. In
turn, the derivatives of are given by [1]

(11)

where the complex matrices are linear combinations of
the Fourier coefficients of the derivatives of (6) evaluated
in steady-state conditions. Similar expressions hold for the
derivatives of [1]. By replacing (11) into (10) we may
express the summations in brackets in the form

(12)
and the like, where and

. The inner summation in (12) has the structure of a
discrete convolution, and can thus be computed by the fast
Fourier transform (FFT) [8]. The same procedure obviously
applies to all subvectors , so that the basis vectors
of the Krylov subspace can be determined mostly by FFT’s.
The computation is thus very efficient, and the CPU time is a
slowly increasing function of the number of spectral lines. The
coefficients are computed and stored at the beginning of
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each inexact Newton step, so that all the information needed
to multiply the Jacobian matrix by a vector is available in
the computer memory. Thus the entries of the Jacobian matrix
need not be re-computed at each iteration, in spite of the fact
that the matrix itself is not stored. In this way the memory
savings are dramatic for large, and a further enhancement
of the computational efficiency is obtained.

Finally, it turns out that the block-diagonal Jacobian matrix
obtained by letting for represents an excellent
preconditioner for broad classes of microwave circuits. Indeed,
this matrix is inexpensive to store and to factorize due to
its block-diagonal structure, and at the same time is accurate
enough to ensure convergence of the Newton-iteration-based
HB analysis at low drive levels [1].

IV. A PERFORMANCE BENCHMARK

In order to demonstrate the numerical performance of the
INHB, in this section we report the results of several analyses
of a nine-FET distributed amplifier driven by three
tones of equal available power . All the calculations are
performed on an HP 755 workstation with a central memory
of 192 MB, starting from zero harmonics. All IM products are
determined to a relative accuracy better than .

1) A small-signal IM test ( dBm) is carried
out first, taking into account all IM products up to the
fifth order. The number of positive IM products is then

, so that . For this
analysis the conventional HB with full Jacobian matrix
requires 157 MB of memory (138 MB for the storage of
the Jacobian matrix alone), and the CPU time is 4215 s.
These figures drop to 17 MB and 40 s with an HB analysis
based on the block-diagonal Jacobian matrix. The INHB
analysis requires 22 MB of memory and 74 s, showing
that its performance is comparable to that of the sparse-
Jacobian HB at those low drive levels ( dBm
for the present case) for which the sparse-matrix analysis
is possible. The numerical results produced by the three
analysis techniques are strictly identical.

2) The same IM test as in 1) is repeated with
dBm, a power level well within the power saturation
region of the amplifier. At this drive level the conventional
HB analysis requires 32 674 s, while the INHB analysis
time is only 203 s, with a speedup factor of about 161.
Once again, the numerical results produced by the two
analysis techniques are strictly identical. Note that the
CPU time ratio between 2) and 1) is 2.74 with the INHB,

and 7.75 with the full-Jacobian HB. This shows that the
INHB has considerably better power-handling capabilities
than the conventional HB.

3) With the same input power level as in 2), (
dBm per tone) the IM analysis is repeated taking into
account all IM products up to the ninth order. The number
of positive IM products is now , and the number
of unknowns is . In this case the storage of
the Jacobian matrix alone would require about 3.5 GB, so
that the conventional HB analysis becomes impossible. On
the contrary, the INHB analysis requires only 68 MB of
memory, and converges smoothly in 1982 s. A comparison
with 2) shows that the ratio between the numbers of
unknowns for the two jobs is about 5, while the CPU time
ratio is only 9.76. For a regular HB analysis dominated
by the Jacobian matrix factorization time, the CPU time
ratio would be of the order of . This gives
a clear example of the slow dependence of the INHB
computational time on the number of unknowns.

Other examples of application of the INHB technique to
large nonlinear simulation problems were discussed in [9].
With respect to the numerical performance reported in [9],
the improved algorithms discussed in this letter provided a
speed increase of about 10%, and a reduction in the overall
memory storage of more than 25%.
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