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Fast and Robust Inexact Newton Approach
to the Harmonic-Balance Analysis
of Nonlinear Microwave Circuits

Vittorio Rizzoli, Franco Mastri, Claudio Cecchetti, and Fiorella Sgallari

Abstract—The letter discusses a novel approach to nonlin- and thus opens the way to the HB treatment of very large-sized
ear microwave circuit simulation by the harmonic-balance (HB) simulation problems.
technique. The nonlinear system is solved by an inexact Newton
method, and the GMRES iteration is used at each step to find
a suitable inexact Newton update. The peculiar structure of the [I. INEXACT NEWTON HARMONIC-BALANCE ANALYSIS

Jacobian matrix allows the basis vectors of the Krylov subspace . .
to be computed mostly by the FFT. The resulting simulation tool Let the HB solving system be formulated as a nonlinear

is fast and robust, and outperforms conventional HB techniques SyStem ofV equations inV unknowns of the fornE(X) = 0,
when applied to large-size nonlinear analysis problems. whereE : RY — RY is continuously differentiable. Given an
approximationX; to the exact solutiorX, the corresponding
Newton updaten; is defined as the solution of Newton’s
equationJ(X;)n;, = —E(X;), whereJ(X) is the Jacobian
I. INTRODUCTION matrix of E with respect taX. The Newton iteration is then
HE Newton-iteration-based harmonic-balance (HB) techlefined byX;,; = X; 4+ n;. This solution technique requires
T nique is generally acknowledged as the principal methd@e Jacobian matrix to be stored and factorized at each step,
for the analysis of nonlinear microwave circuits workingnd is thus not well suited for large values &f because of
in steady-state regime under multitone excitation. Harmorfigeémory and CPU time requirements. Both difficulties can be
balance simulators relying upon this method are robust apinultaneously overcome by resorting to imexactNewton
well behaved, and can normally reach convergence starti§thod [3]. Aninexact Newton updatis defined as a vector
from zero harmonics even at very high drive levels [1]. Th& Satisfying the condition
only outstanding drawback of this simulation approach lies in ‘ Ve : ‘ :
the huge demand of computer resources when the problem”E(XZ) +IXisill < AIEX)] Osfi<h) @
size becomes large. This is due to the fact that the storagesfere f; is named thdorcing term[4]. The inexact Newton
the Jacobian matrix require¥? words, and its factorization iteration is then defined bXi+1 = X; + s;. Note that for
time is O(N?), where N is the number of scalar unknowns.f; = 0, s; reduces tm;, so that the forcing term is in some
These difficulties may be partly overcome making use of aay a measure of the allowed deviation of the inexact update
artificially sparse Jacobian matrix coupled with sparse-matfipom the Newton update. The iteration is terminated when
solvers [1], [2], but this unavoidably cripples the powerthe relative error on each element B{X;) drops below a
handling capabilities of the analysis algorithm. Thus, the neggescribed threshold.
exists for an HB technique that can tackle large-size problemsnexact Newton methods have a number of interesting
(say, N > 10000) on ordinary workstations, while fully features that make them an ideal choice for solving large-
retaining the convergence properties of traditional HB. Asized nonlinear systems. They can be globalized by suitable
algorithm of this kind, named the inexact Newton hal’moni@chniques [5], and their efficiency can be greatly improved
balance (INHB) is outlined in this letter. The INHB providesby appropriately updating the forcing term at each step [4].
the same robustness and accuracy as ordinary HB technigngsve all, they do not require a large linear system to be
with a dramatic reduction of memory storage and CPU timgxactly solved at each step, sinsemust satisfy (1), but is
otherwise arbitrary. Instead, for a giveh the inexact update
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computed and stored: where Uy, Wy are thekth harmonics of (6),Y(w) is the

linear subnetwork admittance matrix, aiNy is a vector of

Norton equivalent current sources of the free generators of
K7 = J(X,) Py K (¢>1) (3) frequency(. Similarly, thekth harmonic ofx(t) will be

denoted byXjy.

wherely is the identity matrix of orderV. The vector space | order to obtain a real solving system, the circuit equations

spanned by the vectoEs,” with 1 < ¢ < Q is called aKrylov  are formulated in terms of the real and imaginary parts of both

subspace of dimensia@ [6]. The Qth-order approximation is the HB errors and the SV harmonics. Accordingly, the real

KV = [1y — J(X,)P;E(X))

T

then expressed in the form [6] Jacobian matrix is partitioned frequency-wise into submatrices
Q Jx s of the form
0 _
sP =5+ P71y aKY 4 ORe[Eyx] ORe[Exy]
=1 Jo = | ORelX]  OIm[X,] @)
so that the correspondingsidual is k=7 | OIm[Ex] OIm[Ex] |

JRe[X;s]  0Im[X,]

Q
r@ = B(X;) + I(Xi)s(¥ = KM + Z%KEHI)- (5)  The basic operation to be performed in the construction of
g=1 the Krylov subspace (3) is the multiplication of the Jacobian
The coefficientse, are found by a least squares method ifnatrix by some real vector, sgy to find another real vector,
such a way thaﬂrgQ)H is minimized.ng) is then taken as ;ayf. We may partitionf, g into subvectors frequency-wise

the inexact Newton update if (1) is satisfied. This result {8 @ Way consistent with (8), so that tigh subvector off

guaranteed to be achieved for sufficiently large because @kes on the form
limg_eo ng) = n; [6]. In practice it has been found that Ak | A as
@ < 50 is normally sufficient to obtain the desired accuracy fie = di | zs:Jk’s &= zs:Jk’s bs | ©)
in HB applications, even at high drive levels.

From (8), (9) making use of (7) we obtain

lll. GENERATION OF THE BASIS

Uy Uy
= Y s s
VECTORS OF THEKRYLOV SUBSPACE cx = Re| Y () Z{aRe[Xs]a + 8Im[Xs]b }
With the INHB the CPU time required to exactly solve s
Newton’s equation is essentially replaced by the time required I Z IOWy _— OWy b (10)
to compute the basis vectors (3). As a matter of fact, the subse- — | 9Re[X] > Olm[X,]

guent minimization process has negligible cost for large values

of N, since the number of coefficients, is comparatively Note thatdk.is t_he imaginary part of the same quantity. In
small. Most of the CPU time is thus spent in the multiplicatiofn, the derivatives oUy are given by [1]

of the right-preconditioned Jacobian matdXX;)P;* by a n

sequence of vectors. This basic operation can be performedaai = Z(jQS)"’[Fm,k_s + (D)™ F o kts]

very efficiently by exploiting the peculiar structure of the Re[X] m=0

Jacobian matrix, as will be shown in this section. Note that 5, P, .

the subscript " of the current inexact Newton step will be 11 = Z Q) [Fmx—s — (=1)"Fmx4s] (11)
understood in the following for the sake of formal simplicity. m=0

Making use of the piecewise formulation of the HB techwhere the complex matrice,, ,, are linear combinations of
nique, the circuit is partitioned into a linear and a nonlineahe Fourier coefficients of the derivatives of (6) evaluated
subnetwork connected througty ports @evice ports The in steady-state conditions. Similar expressions hold for the
nonlinear subnetwork may be described by the parametderivatives of Wy [1]. By replacing (11) into (10) we may

equations [1] express the summations in brackets in the form
dx d"x n
v(t) =u {x(t), e T xd(t)} IUk dUy _
dt dt zs: aRe[Xs]as + ahn[Xs] by rgz:o zs: Fnl,k—sznl,s
i(f) = w [xu), b ,’f,xd@)} ©) | | | (12)
dt dt and the like, where,,, s = (jQ:)™(a; + jb,) andz,, s =

where v(t) andi(¢) are vectors of voltages and currents atrs The inner summation in (12) has the structure of a
the common portsx(¢) is a vector of state variables (SV), iscrete convolution, and can thus be computed by the fast

and xq(t) is a vector of time-delayed state variables, i.e!:,our_Ier transform (FFT) [8]. The same procedur_e obviously
pplies to all subvectorsy, dyx, so that the basis vectors

xg;(t) = z;(t—7;). The dimension of all vectors in (6) is equaf _ !

to np. The complex HB error at a generic intermodulatior’i_];]the Krylov _sub;pahce can beﬁ(_jgtermlnzd ?Oétguby FFT s

(IM) product £ of the forcing tones is given by [1] € co.mputatllon IS t us very € icient, and the .tlme IS a
slowly increasing function of the number of spectral lines. The

Ex = Y(%)Ux + Wy + N (7) coefficientsF,, ,, are computed and stored at the beginning of
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each inexact Newton step, so that all the information needed
to multiply the Jacobian matrix by a vector is available in
the computer memory. Thus the entries of the Jacobian matrix
need not be re-computed at each iteration, in spite of the fa8)
that the matrix itself is not stored. In this way the memory
savings are dramatic for larg¥, and a further enhancement
of the computational efficiency is obtained.

Finally, it turns out that the block-diagonal Jacobian matrix
obtained by lettingly s = 0 for k # s represents an excellent
preconditioner for broad classes of microwave circuits. Indeed,
this matrix is inexpensive to store and to factorize due to
its block-diagonal structure, and at the same time is accurate
enough to ensure convergence of the Newton-iteration-based
HB analysis at low drive levels [1].

IV. A PERFORMANCE BENCHMARK

In order to demonstrate the numerical performance of the
INHB, in this section we report the results of several analyses
of a nine-FET distributed amplifi€n, = 18) driven by three
tones of equal available powd?,,. All the calculations are
performed on an HP 755 workstation with a central memo
of 192 MB, starting from zero harmonics. All IM products ar
determined to a relative accuracy better tHam>.

1) A small-signal IM test £, = —10 dBm) is carried
out first, taking into account all IM products up to th
fifth order. The number of positive IM products is then
P =115, so thatN = np(2P + 1) = 4158. For this
analysis the conventional HB with full Jacobian matrix 0
requires 157 MB of memory (138 MB for the storage of
the Jacobian matrix alone), and the CPU time is 4215 s.
These figures drop to 17 MB and 40 s with an HB analysié2
based on the block-diagonal Jacobian matrix. The INHB
analysis requires 22 MB of memory and 74 s, showingd3l
that its performance is comparable to that of the sparsey
Jacobian HB at those low drive level®{ < —3 dBm

for the present case) for which the sparse-matrix analys%
is possible. The numerical results produced by the thre
analysis techniques are strictly identical.

The same IM test as in 1) is repeated with, = +20
dBm, a power level well within the power saturation [7]
region of the amplifier. At this drive level the conventional
HB analysis requires 32674 s, while the INHB analysis[S]
time is only 203 s, with a speedup factor of about 161.
Once again, the numerical results produced by the twé!
analysis techniques are strictly identical. Note that the
CPU time ratio between 2) and 1) is 2.74 with the INHB,

the

[6]
2)
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and 7.75 with the full-Jacobian HB. This shows that the
INHB has considerably better power-handling capabilities
than the conventional HB.

With the same input power level as in 27 ( = 420
dBm per tone) the IM analysis is repeated taking into
account all IM products up to the ninth order. The number
of positive IM products is now® = 579, and the number

of unknowns isN = 20862. In this case the storage of
the Jacobian matrix alone would require about 3.5 GB, so
that the conventional HB analysis becomes impossible. On
the contrary, the INHB analysis requires only 68 MB of
memory, and converges smoothly in 1982 s. A comparison
with 2) shows that the ratio between the numbers of
unknowns for the two jobs is about 5, while the CPU time
ratio is only 9.76. For a regular HB analysis dominated
by the Jacobian matrix factorization time, the CPU time
ratio would be of the order 06> = 125. This gives

a clear example of the slow dependence of the INHB
computational time on the number of unknowns.

Other examples of application of the INHB technique to
large nonlinear simulation problems were discussed in [9].
j/ith respect to the numerical performance reported in [9],

improved algorithms discussed in this letter provided a

speed increase of about 10%, and a reduction in the overall
Jmemory storage of more than 25%.
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